skip to primary navigationskip to content

Ottoline Leyser's Group

Ottoline Leyser

Director of SLCU

Sainsbury Laboratory Cambridge
University of Cambridge
Bateman Street

Cambridge CB2 1LR

Office Phone: 01223 761103

Research Interests

The Leyser Group's research is aimed at understanding the role of plant hormones in plant developmental plasticity, using the regulation of shoot branching as a model. Axillary meristems, which are established in each leaf axil formed from the primary shoot apical meristem, can remain dormant or activate to produce a branch. The decision to activate or not involves integration of diverse environmental, physiological and developmental inputs, and is mediated by a network of interacting hormonal signals that generate a rich source of systemically transmitted information, which is locally interpreted to regulate branching. At its hub is the polar auxin transport system, which extends throughout the plant, transporting auxin basipetally from shoot apices to the roots. The system is dynamically modeled and remodeled by auxin itself. Our current data suggest that shoot apical meristems compete for common auxin transport paths to the root. High auxin in the main stem, exported from already active meristems, prevents the activation of further meristems by reducing the sink strength of the mains stem for auxin. Other hormonal signals can influence branching by modulating the auxin transport network and/or the ability of buds to compete for access to it. For example, strigolactones can reduce the accumulation of auxin transporters at the plasma membrane making it more difficult for buds to activate.

We are working to understand the dynamic properties of this hormonal network and their implications for adaptive developmental plasticity.

Key Publications

 Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biology 14(4): e1002446.

Müller D, Waldie T, Miyawaki K, To JPC, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant Journal 82:874-886

Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein, PIN1, from the plasma membrane. PLoS Biology 11(1): e1001474


Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Current Biology 21: R331-337

Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: Lessons from shoot branching. Plant Journal 79: 607-622


Research supported by grants from: