skip to primary navigationskip to content
 

Schornack Group

Sebastian Schornack

Research Group Leader

Sainsbury Laboratory Cambridge
University of Cambridge
Bateman Street

Cambridge CB2 1LR

Office Phone: 01223 761145

Research Interests

Plants constantly engage in interactions with microbial organisms. These interactions can either be detrimental such as those with the economically relevant fungus-like oomycete Phytophthora infestans, the causal agent of the Irish Potato Famine or beneficial to supply phosphate such as in symbiotic interactions with mycorrhizal fungi that occur in most plant species.

Both, pathogenic and mutualistic symbioses follow structurally similar developmental processes to establish intracellular interfaces. It is generally accepted that both, plants and microorganisms contribute to the formation of dedicated accommodation structures. However, we know little about the underlying molecular mechanisms that drive differentiation of host cells and tissues to form intracellular interfaces.

The Schornack group aims to characterize the extent to which beneficial and detrimental microorganisms employ similar plant developmental processes for colonization. To this end we plan to assess the overlap between Mycorrhiza processes and root infection by the biotrophic pathogen Phytophthora palmivora and will characterize genetic elements with common functions. Furthermore, we will elucidate the role of microbial effectors for development of plant cells into intracellular accommodation structures. This work will reveal the boundaries between symbiosis and pathogenesis and will provide novel insights into plant development driven by biotic cues.

Selected Recent Publications

Wang E., Schornack S., Marsh J.F., Gobbato E., Schwessinger B., Eastmond P., Schultze M., Kamoun S., Oldroyd G.E. (2012) A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Curr Biol. 22(23)

Lu Y.J.*, Schornack S.*, Spallek T., Geldner N., Chory J., Schellmann S., Schumacher K., Kamoun S., Robatzek S. (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol. [epub] * shared first authors

Bozkurt, T.O.*, Schornack, S.*, Win, J., Shindo, T., Oliva, R., Cano, L.M., Jones, A.M.E., Huitema, E., van der Hoorn, R.A.L., Kamoun, S. (2011) Phytophthora infestans effector AVRblb2 prevents focal secretion of a plant immune protease, Proc Natl Acad Sci USA 108(51), * shared first authors

Chaparro-Garcia A., Wilkinson R.C., Gimenez-Ibanez S., Findlay K., Coffey M.D., Zipfel C., Rathjen J.P., Kamoun S.*, Schornack S.* (2011) The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE 6(1). * shared corresponding authors

Schornack S.*, van Damme M.*, Bozkurt T.O., Cano L.M., Smoker M., Thines M., Gaulin E., Kamoun S., Huitema E. (2010): Ancient class of translocated oomycete effectors targets the host nucleus. Proc Natl Acad Sci USA 107(40). * shared corresponding authors

Selected reviews

Rey T., Schornack S. (2013): Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biol. 14(6). Review.

Schornack S., Moscou M.J., Ward E.R., Horvath D.M. (2013): Engineering Plant Disease Resistance Based on TAL Effectors. Annu Rev Phytopathol. 51. Review.

Bozkurt T.O., Schornack S., Banfield M.J., Kamoun S. (2012): Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol. [epub]

Schornack S., Huitema E., Cano L.M., Bozkurt T.O., Oliva R., Van Damme M., Schwizer S., Raffaele S., Chaparro-Garcia A., Farrer R., Segretin M.E., Bos J., Haas B.J., Zody M.C., Nusbaum C., Win J., Thines M., Kamoun S. (2009): Ten things to know about oomycete effectors. Mol Plant Pathol. 10(6). Review.

Red fluorescent Phytophthora colonising a Medicago truncatula (barrel medic) root

A GFP-labelled protein functions at Phytophthora haustoria structures

 

Research supported by: