skip to content

Sainsbury Laboratory

*Professor Leyser is on secondment to UKRI until June 2025 and is not currently accepting any new students or research staff team members. 

Ottoline received her BA (1986) and PhD (1990) in Genetics from the University of Cambridge. After post-doctoral research at Indiana University and Cambridge, she took up a lectureship at the University of York, where she worked from 1994-2010. Among her honours are the Society of Experimental Biology’s President’s Medal (2000), the Royal Society Rosalind Franklin Award (2007), the International Plant Growth Substance Association’s Silver Medal (2010), the UK Genetics Society Medal (2016) and the EMBO Women in Science Award (2017). She was appointed a Dame Commander of the Order of the British Empire (DBE) in the 2017 New Year Honours list for services to plant science, science in society and equality and diversity in science. She is a Fellow of the Royal Society, a Foreign Associate of the US National Academy of Sciences and a Member of the European Molecular Biology Organisation and the Leopoldina. She is a Fellow of Clare College. She currently chair’s the Royal Society’s Science Policy Expert Advisory Committee and serves on the Council for Science and Technology. 

 

Research Interests

The Leyser Group's research is aimed at understanding the role of plant hormones in plant developmental plasticity, using the regulation of shoot branching as a model. Axillary meristems, which are established in each leaf axil formed from the primary shoot apical meristem, can remain dormant or activate to produce a branch. The decision to activate or not involves integration of diverse environmental, physiological and developmental inputs, and is mediated by a network of interacting hormonal signals that generate a rich source of systemically transmitted information, which is locally interpreted to regulate branching. At its hub is the polar auxin transport system, which extends throughout the plant, transporting auxin basipetally from shoot apices to the roots. The system is dynamically modeled and remodeled by auxin itself. Our current data suggest that shoot apical meristems compete for common auxin transport paths to the root. High auxin in the main stem, exported from already active meristems, prevents the activation of further meristems by reducing the sink strength of the mains stem for auxin. Other hormonal signals can influence branching by modulating the auxin transport network and/or the ability of buds to compete for access to it. For example, strigolactones can reduce the accumulation of auxin transporters at the plasma membrane making it more difficult for buds to activate.

We are working to understand the dynamic properties of this hormonal network and their implications for adaptive developmental plasticity.

 

Key Publications

Selected recent publications

Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiology 177: 803-818

Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biology 14(4): e1002446.

Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud dormancy in Arabidopsis. Development 144: 1661-1673

Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein, PIN1, from the plasma membrane. PLoS Biology 11(1): e1001474

Reviews

Leyser O (2018) Auxin Signaling. Plant Physiology 176: 465-479

Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Current Biology 21: R331-337

Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: Lessons from shoot branching. Plant Journal 79: 607-622

 

Research supported by grants from

European Union, European Research Council, BBSRC and Gatsby Charitable Foundation

 

Research Group Leader
Professor Ottoline  Leyser

Contact Details

Sainsbury Laboratory
University of Cambridge
Bateman Street
Cambridge
CB2 1LR
Email address: