skip to primary navigationskip to content
 

New legume research adds to the understanding of beneficial and detrimental plant-microbe interactions

last modified Dec 22, 2017 01:42 PM
New legume research adds to the understanding of beneficial and detrimental plant-microbe interactions

Colonization of legume roots by Phytophthora. Left: Medicago truncatula, Right: Lotus japonicus. The Phytophthora pathogen is labelled red and yellow, respectively.

The health of a plant is dependent on successfully navigating a diverse world of plant colonizing microbes. For many plants, a fundamental challenge is facilitating colonization of beneficial symbionts whilst also deterring colonization of detrimental pathogens. SLCU’s Sebastian Schornack studies common and contrasting processes involved in the interaction of plants with beneficial and detrimental microbes. New research from the Schornack group (Rey et al., 2017, Fuechtbauer et al., 2017) sheds new light on such processes that occur when pathogens and symbionts colonize the roots of legume plants.

Among the most economically important plant pathogens are members of the genus Phytophthora, which includes the potato late blight pathogen. The Schornack group, in collaboration with the lab of Simona Radutoiu (University of Aarhus), has identified a cell periphery receptor involved in a plant’s ability to detect and respond to attempts by Phytophthora palmivora to colonize its roots. Interestingly, the receptor resembles a type that has been associated with chitin perception, but the team found no chitin in the infection structures of the pathogen. Therefore, this type of receptor may mediate perception of additional unknown carbohydrates and serve as an early warning system for roots under attack.

In a second study, the Schornack group found another plant regulator of Phytophthora colonization processes, this time a GRAS-type transcription factor that might be involved in directing gene expression changes in legumes that permit pathogenesis. Remarkably, the same gene was previously identified as facilitating legume root colonization with beneficial arbuscular mycorrhiza fungi. This work, which was in collaboration with Christophe Jacquet and Maxime Bonhomme (LRSV Toulouse), now suggests that the same protein plays a role in legume interactions with both beneficial and pathogenic microbes.

Together the manuscripts, published in the Plant Journal and the Journal of Experimental Botany, contribute to our understanding of similar and divergent mechanisms acting in pathogenic and symbiotic plant-microbe interactions.

 

 

Supported by the Gatsby Charitable Foundation

RSS Feed Latest news

Ancestral deterrence strategy protects land plants from microbial infection

Jul 11, 2019

Scientists at Sainsbury Laboratory have uncovered striking similarities in how two distantly related plants defend against pathogens despite splitting from their common ancestor more than 400 million years ago.

New research team joins SLCU

Jun 25, 2019

Dr Sarah Robinson has joined the SLCU research leadership team and will head a new research group focused on investigating the mechanical properties of plants associated with growth.

SLCU researchers discover gene that could help us grow crops faster

Jun 10, 2019

Plant scientists at SLCU and the University of Bordeaux have discovered a gene that they hope can be used to widen a nutrient trafficking bottleneck and potentially increase crop yields.

View all news