skip to primary navigationskip to content
 

Plant science research team including SLCU’s Helariutta reveals a missing link in plant transport

last modified Jun 22, 2017 12:39 PM
Plant science research team including SLCU’s Helariutta reveals a missing link in plant transport

Diagrams showing different plasmodesmata connecting protophloem sieve elements to surrounding cells and size-dependent phloem unloading of solutes and macromolecules.

Phloem is celebrated for its role in moving the products of photosynthesis from ‘source’ tissues, e.g. leaves, through the plant body-plan to ‘sink’ tissues, e.g. roots. Despite this central role in plant physiology, the photosynthate delivery interface between the phloem and the surrounding sink tissues is not well characterised. Recently, a collaborative effort spearheaded by the Knoblauch [Washington State University] and Oparka [University of Edinburgh] labs and involving the Helariutta lab [SLCU] shed light on this interface. The team showed that a specific cell type, the phloem pole pericycle cells, which are adjacent to the long-distance transport cells of the phloem, have an important role in mediating the unloading of photosynthates in root tips. The unloading occurs through specialized cell-cell connections the authors dubbed "funnel plasmodesmata" that have a high capacity to deliver small molecules and proteins from the phloem long-distance transport cells to the phloem pole pericycle cells. A real surprise of this investigation was the compactness of the unloading zone in the phloem. Limited to only 5-10 long-distance transport cells, it seems that plants deliver to root tips the sugars and other compounds needed for growth through a very small gateway. The full work is published in the open access Journal eLife and is accessible here https://elifesciences.org/articles/24125.

 

 

RSS Feed Latest news

Plants feel the heat

Feb 13, 2018

Sainsbury Laboratory scientists have solved a 79-year-old mystery by discovering how plants vary their response to heat stress depending on the time of day.

Fast-talking plants increase flower production within 24-hours of soil nutrient application

Jan 24, 2018

The molecular mechanisms enabling plants to quickly adapt their rate of flower production in response to changing nutrient levels in soil have been revealed by researchers at the Sainsbury Laboratory at the University of Cambridge.

Re-wiring cells by crossing kingdoms

Jan 22, 2018

Game-changing synthetic biology developments that could help address global health and agriculture challenges will be examined at a three-day international synthetic biology symposium at the Sainsbury Laboratory, University of Cambridge, this spring (16-18 April 2018).

View all news

SLCU Logo