skip to primary navigationskip to content
 

Plant science research team including SLCU’s Helariutta reveals a missing link in plant transport

last modified Jun 22, 2017 12:39 PM
Plant science research team including SLCU’s Helariutta reveals a missing link in plant transport

Diagrams showing different plasmodesmata connecting protophloem sieve elements to surrounding cells and size-dependent phloem unloading of solutes and macromolecules.

Phloem is celebrated for its role in moving the products of photosynthesis from ‘source’ tissues, e.g. leaves, through the plant body-plan to ‘sink’ tissues, e.g. roots. Despite this central role in plant physiology, the photosynthate delivery interface between the phloem and the surrounding sink tissues is not well characterised. Recently, a collaborative effort spearheaded by the Knoblauch [Washington State University] and Oparka [University of Edinburgh] labs and involving the Helariutta lab [SLCU] shed light on this interface. The team showed that a specific cell type, the phloem pole pericycle cells, which are adjacent to the long-distance transport cells of the phloem, have an important role in mediating the unloading of photosynthates in root tips. The unloading occurs through specialized cell-cell connections the authors dubbed "funnel plasmodesmata" that have a high capacity to deliver small molecules and proteins from the phloem long-distance transport cells to the phloem pole pericycle cells. A real surprise of this investigation was the compactness of the unloading zone in the phloem. Limited to only 5-10 long-distance transport cells, it seems that plants deliver to root tips the sugars and other compounds needed for growth through a very small gateway. The full work is published in the open access Journal eLife and is accessible here https://elifesciences.org/articles/24125.

 

 

 

 

Supported by the Gatsby Charitable Foundation

Tweet of the Week

 

Katharina Schiessl has been inundated with likes and congratulations for her research published in Current Biology this week. This is a game-changer for researchers aiming to engineer N-fixing into cereals – and her macro photos of nodules and a lateral root are stunning! Follow Kath @kathschiessl on Twitter.

RSS Feed Latest news

Harnessing tomato jumping genes could help speed-breed drought-resistant crops

Sep 16, 2019

Once dismissed as ‘junk DNA’ that served no purpose, a family of ‘jumping genes’ found in tomatoes has the potential to accelerate crop breeding for traits such as improved drought resistance.

Food of the Future: free online course launched to inspire the next generation of scientists

Aug 30, 2019

A new, free online course aimed at 16-19 year olds across Europe, funded by EIT Food and developed by the Gatsby Plant Science Education Programme (GPSEP) at the University of Cambridge alongside international partners, aims to inspire young people to study science so they can help to create food of the future.

How plants coordinate their biological clocks

Aug 15, 2019

New research from James Locke's group shows that clocks in plant seedlings can self-organise without a master.

View all news