skip to primary navigationskip to content
 

Plants and a seaweed species independently evolved a strikingly similar way of placing new organs

last modified Oct 27, 2017 11:22 AM
Plants and a seaweed species independently evolved a strikingly similar way of placing new organs

Image: cell walls of a Sargassum muticum ‘shoot’ tip, imaged by confocal microscopy. The spiral patterning can be observed by following the position of highly-stained branch tips from youngest (1), near the center, to oldest (10) near the periphery.

Plants present a multitude of patterns to the world. One of the most obvious and striking is phyllotaxis (from Ancient Greek phýllon meaning leaf and táxis meaning arrangement), the position of organs around the stem. In new work by PhD student Marina Linardic, in the Braybrook Group, potential patterning mechanisms for phyllotaxis in a seaweed have been explored.

Published this week in Scientific Reports, Marina’s work shows that, much like plant phyllotaxis, the organ patterning system in the seaweed Sargassum muticum is self-organising, position-dependent, can re-establish after wounding, and is not based on division patterns. This similarity is striking because the brown algae, which include Sargassum, and plants share a common ancestor that lived millions of years ago and lacked organs altogether. There are some interesting possible differences: the plant hormone auxin, which patterns plant phyllotaxis, does not appear to be a strong patterning influence in Sargassum; while cell walls of emerging new organs in plants show some softening linked to growth, this is not the case in Sargassum.

Understanding the many patterning mechanisms that nature presents us with will enrich our understanding of the natural world, but also provide an important basis for crop improvements in plants and seaweeds! The full, open-access, article may be found here: https://www.nature.com/articles/s41598-017-13767-5

RSS Feed Latest news

Edwige Moyroud awarded Linnean Society Bicentenary Medal

May 24, 2018

Dr Edwige Moyroud has been honoured by the Linnean Society of London with the 2018 Bicentenary Medal for her discoveries on the evolution and development of nanoscale architecture in flower petals.

Elliot Meyerowitz awarded prestigious Gruber Prize

May 14, 2018

Professor Elliot Meyerowitz has been awarded the 2018 Gruber Genetics Prize by the Gruber Foundation for his "groundbreaking work in identifying the basic regulatory and biochemical mechanisms underlying the development of plants."

HFSP funding to investigate cellular growth and stresses in plants

Apr 11, 2018

SLCU's Professor Henrik Jönsson is part of an international collaboration that has received funding from the Human Frontier Science Program (HFSP) to develop the first integrated model in plants investigating the effects from cellular growth and stresses on nuclear shape and genetic activity.

Research shows first land plants were parasitised by microbes

Apr 03, 2018

Sainsbury Laboratory researchers have found that the relationship between plants and filamentous microbes not only dates back millions of years, but that modern plants have maintained this ancient mechanism to accommodate and respond to microbial invaders.

Rare mineral discovered in plants for first time

Mar 05, 2018

A rare mineral that holds enticing potential as a new material for industrial and medical applications has been discovered on alpine plants through a collaboration between Sainsbury Laboratory and Cambridge University Botanic Garden.

View all news

SLCU Logo