skip to primary navigationskip to content
 

Leica-Renishaw SP8-FLIMan

A partnership between SLCU and three companies; Leica Microsystems, Leica Industrial and Renishaw, the FLIMan allows a diverse range of specialist techniques in addition to high-end confocal microscopy:

- Real time imaging of protein-protein interactions and biosensors using FLIM.

- Label-free organelle imaging using Raman, in addition to fluorescently labelled reporters.

- Direct imaging of molecular constituents of cells and tissues with applications to phytohormones.

Equipment

Leica SP8 confocal with dual channel FLIM, 2x HyD SMD detectors, 2x PMTs, 1x t-PMT, automatic stage for use in both confocal and Raman modes. Renishaw InVia Raman system with Rencam CCD and Andor EMCCD detectors. Conversion kit for liquid samples.

Software

Leica LAS X with FLIM module, Picoquant software for photon counting. WiRE software for Raman spectral acquisition and
mapping.
 

Lasers:

(Confocal) Pulsed 405nm, 440nm, 470nm. Continuous 440nm, 488nm, 514nm and 552nm
(Raman) 532nm, 785nm.

Objectives:

(SP8+Raman) 20x dry, 20x 0.75NA multi-immersion, 25x 0.95NA water dipping, 63x 1.2NA water, 63x 1.4NA oil.
(Raman only) 5x dry, 20x dry, 50x dry, 20x 0.75NA multi-immersion.

Coronavirus

 

SLCU Reopening Site

(for staff & students)

 

University of Cambridge Guidance 

 

We would like to thank NHS staff, key workers and volunteers who are working tirelessly throughout the ongoing coronavirus pandemic in the UK. Our thoughts are with those whose health is impacted here in the UK and around the world.

 

 

Supported by the Gatsby Charitable Foundation

RSS Feed Latest news

Giles Oldroyd elected as member of EMBO

Jul 10, 2020

Professor Giles Oldroyd is among 63 other scientists from around the world elected this year as Members and Associate Members of the European Molecular Biology Organisation (EMBO).

Cells in tight spaces – how the cytoskeleton responds to different cell geometries

Jul 09, 2020

Inside every living cell, there is a network of protein filaments providing an interior scaffold controlling the cell’s shape called the cytoskeleton. Research from the Sainsbury Laboratory Cambridge University (SLCU) suggests that this relationship might actually be two-way, with cell geometry itself having the capacity to influence the organisation of the cytoskeleton in living plant cells.

Professor Dame Ottoline Leyser appointed as new CEO of UKRI

May 14, 2020

Professor Dame Ottoline Leyser DBE FRS, Director of the Sainsbury Laboratory at the University of Cambridge, has been appointed the new Chief Executive Officer of UK Research and Innovation (UKRI), the national funding agency investing in science and research in the UK.

View all news