skip to primary navigationskip to content
 

Leica-Renishaw SP8-FLIMan

A partnership between SLCU and three companies; Leica Microsystems, Leica Industrial and Renishaw, the FLIMan allows a diverse range of specialist techniques in addition to high-end confocal microscopy:

- Real time imaging of protein-protein interactions and biosensors using FLIM.

- Label-free organelle imaging using Raman, in addition to fluorescently labelled reporters.

- Direct imaging of molecular constituents of cells and tissues with applications to phytohormones.

Equipment

Leica SP8 confocal with dual channel FLIM, 2x HyD SMD detectors, 2x PMTs, 1x t-PMT, automatic stage for use in both confocal and Raman modes. Renishaw InVia Raman system with Rencam CCD and Andor EMCCD detectors. Conversion kit for liquid samples.

Software

Leica LAS X with FLIM module, Picoquant software for photon counting. WiRE software for Raman spectral acquisition and
mapping.
 

Lasers:

(Confocal) Pulsed 405nm, 440nm, 470nm. Continuous 440nm, 488nm, 514nm and 552nm
(Raman) 532nm, 785nm.

Objectives:

(SP8+Raman) 20x dry, 20x 0.75NA multi-immersion, 25x 0.95NA water dipping, 63x 1.2NA water, 63x 1.4NA oil.
(Raman only) 5x dry, 20x dry, 50x dry, 20x 0.75NA multi-immersion.

 

Supported by the Gatsby Charitable Foundation

RSS Feed Latest news

New insights could help plants fortify walls against root pathogens

Sep 03, 2020

Sainsbury Laboratory Cambridge University (SLCU) researchers, as part of a multidisciplinary international team, have uncovered a mechanism controlling subtle changes to the architecture of cell walls in plant roots that bolsters their defence against Phytophthora palmivora without negatively affecting plant growth.

Giles Oldroyd elected as member of EMBO

Jul 10, 2020

Professor Giles Oldroyd is among 63 other scientists from around the world elected this year as Members and Associate Members of the European Molecular Biology Organisation (EMBO).

Cells in tight spaces – how the cytoskeleton responds to different cell geometries

Jul 09, 2020

Inside every living cell, there is a network of protein filaments providing an interior scaffold controlling the cell’s shape called the cytoskeleton. Research from the Sainsbury Laboratory Cambridge University (SLCU) suggests that this relationship might actually be two-way, with cell geometry itself having the capacity to influence the organisation of the cytoskeleton in living plant cells.

View all news