skip to content
 

Assembled by Cairn in the UK, the inverted spinning disk system is centred around a Nikon Eclipse Ti microscope and a Yokogawa disk CSU-X1. It is most suitable for ultra-fast imaging or for specimens where unwanted photobleaching may be a problem. In the Sainsbury Laboratory, it is commonly used for long time-lapse imaging ranging from overnight to several days.

Offers multidimensional acquisition from two cameras (EMCCD from the Yokogawa, High resolution CCD from the Nikon Ti), sample incubation, FRAP and photoactivation. The Nikon Perfect Focus system prevents specimen z-drift.

Software:

Metamorph

Lasers:

405nm, 445nm, 488nm, 561nm, 514nm

Cameras:

Photometrics Evolve (512x512 EMCCD) and Coolsnap HQ.

Extras:

FRAP module, fully enclosed incubation, sensitive xyz stage movements, Nikon Perfect Focus

Objectives:

Nikon objectives include standard and long working distance lenses for dry, immersion and water dipping. Please contact the for further details.

SLCU logo - transparent

 

 

Supported by

Gatsby logo - transparent

None

spinningdisk

Latest news

Peas n Chips: Creating food security with African Yam Bean

8 April 2021

Can one plant produce both tasty and nutritious beans and tubers? Yes, the African yam bean can. Not only does it grow high-protein edible grains and tubers, this drought-resilient crop also replenishes the soil and is highly adaptable to varying-climates.

How plant stem cells renew themselves – a cytokinin story

8 April 2021

The mechanism by which the plant hormone cytokinin controls cell division has been discovered – a breakthrough that significantly improves our understanding of how plants grow.

Integrating maths and plant science to explain how plant roots generate a hormone gradient

15 February 2021

The research team that developed a biosensor that first recorded that a distinct gradient of the plant growth hormone gibberellin correlated with plant cell size has now revealed how this distribution pattern is created in roots.