skip to content

Sainsbury Laboratory

Yrjö Helariutta


Sainsbury Laboratory
University of Cambridge
Bateman Street

Cambridge CB2 1LR


The Helariutta lab's research focuses on understanding the patterning processes involved in the development of plant vascular tissues. The vascular network provides plants with structural support and long-distance transport, meaning that vascular tissues must predictably differentiate to form continuous strands. To uncover the mechanisms that establish and maintain the vascular pattern, we take advantage of the Arabidopsis root tip, which has a stereotypical arrangement with procambial cells separating opposite phloem poles from a central xylem axis.

Over the past 15 years, research in the Helariutta lab and elsewhere has uncovered a central role for the phytohormones auxin and cytokinin in vascular patterning. Cytokinin acts to promote procambial proliferation at the expense of xylem, while auxin signalling is critical for the specification of the xylem tissues. Multiple feedback loops between the two hormones at the level of synthesis, metabolism, and signalling determine the size and arrangement of the vascular cylinder. We use genetic screens in sensitized backgrounds to identify novel components of these  networks, as well as other genetic factors regulating vascular development. In addition, we use microarrays and whole-transcriptome sequencing to investigate the interactions that define the networks and the changes that occur during the course of development.

Communication between cells has also emerged as an important factor in vascular development. Plasmodesmata bridge cell walls to connect the cytoplasm of neighbouring plant cells, transforming them into a continuous, though compartmentalized, space called the symplast. Phloem is rich in plasmodesmata-like structures. Using a genetic screen, we discovered a mutation in a callose synthase gene which led to excess callose deposition at plasmodesmata, disrupting intercellular connectivity and resulting in defects in vascular patterning. By expressing the mutated gene under various inducible promoters, we can selectively block plasmodesmatal connections at a chosen time and in specific tissues. This enables us to probe the role of the connections between particular tissue regions at different stages of development. We will use this technology to identify proteins that move across these channels and clarify their role in vascular development, as well as mapping the symplastic connections in the Arabidopsis root tip. We will also focus on phloem morphogenesis.

Key Publications

Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO, Mellor N, Help-Rinta-Rahko H, Otero S, Smet W, Boekschoten M, Hooiveld G, Hashimoto K, Smetana O, Siligato R, Wallner ES, Mähönen AP, Kondo Y, Melnyk CW, Greb T, Nakajima K, Sozzani R, Bishopp A, De Rybel B, Helariutta Y. (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565: 490-494.

Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ. (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. Elife 6. pii: e24125.

Furuta, K.M., Yadav,S.R., Lehesranta,S., Belevich, I., Miyashima, S., Heo, J., Vatén, A., Lindgren, O., De Rybel, B., Van Isterdael, G., Somervuo, P., Lichtenberger, R., Rocha, R., Thitamadee, S., Tähtiharju, S., Auvinen, P., Beeckman, T., Jokitalo, E., Helariutta, Y. (2014) Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345: 933-937

Dettmer J, Ursache R, Campilho A, Miyashima S, Belevich I, O’Regan S, Mullendore DL, Yadav SR, Lanz C, Papagni A, Schneeberger K, Weigel D, Stierhof YD, Moritz T, Knoblauch M, Jokitalo E, Helariutta Y (2014) CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nature Communications 5: 4276.


Ruonala R, Ko D, Helariutta Y. (2017) Genetic Networks in Plant Vascular Development. Annu Rev Genet. 51:335-359.

Blob B, Heo JO, Helariutta Y. (2018) Phloem differentiation: an integrative model for cell specification. J Plant Res. 131:31-36.

Related links:

Group Members

Prof Helariutta's group in Helsinki

The Finnish Center of Excellence in the Molecular Biology of Primary Producers (2014-2019)

This figure presents some of the various markers used in our research.  The first panel is a graphical illustration of the various cell types within the Arabidopsis thaliana primary root. The following images are optical, plastic and paraffin cross sectio

This figure presents some of the various markers used in our research. 

The first panel is a graphical illustration of the various cell types within the Arabidopsis thaliana primary root. The following images are optical, plastic and paraffin cross sections at the meristematic region of primary roots analyzed 5 days post germination, cropped to show the vascular cylinder and endodermis. The majority of these markers are in wild type and some are in mutant background.


Research supported by grants from:

erc logo